$\mathcal{P T}$
-invariant point interactions in one dimension

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2005 J. Phys. A: Math. Gen. 38 L519
(http://iopscience.iop.org/0305-4470/38/29/L02)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.92
The article was downloaded on 03/06/2010 at 03:50

Please note that terms and conditions apply.

LETTER TO THE EDITOR

$\mathcal{P} \mathcal{T}$-invariant point interactions in one dimension

F A B Coutinho ${ }^{1}$, Y Nogami 2, Lauro Tomio ${ }^{3}$ and F M Toyama ${ }^{4}$
${ }^{1}$ Faculdade de Medicina, Universidade de São Paulo 01246-903, SP, Brazil
${ }^{2}$ Department of Physics and Astronomy, McMaster University, Hamilton, L8S 4M1 Ontario, Canada
${ }^{3}$ Instituto de Física Teórica, Universidade Estadual Paulista, Rua Pamplona, 145, 01405-900 São Paulo, SP, Brazil
${ }^{4}$ Department of Information and Communication Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan

Received 13 April 2005
Published 6 July 2005
Online at stacks.iop.org/JPhysA/38/L519

Abstract

By using Wu and Yu's pseudo-potential, we construct point interactions in one dimension that are complex but conform to space-time reflection $(\mathcal{P} \mathcal{T})$ invariance. The resulting point interactions are equivalent to those obtained by Albeverio, Fei and Kurasov as self-adjoint extensions of the kinetic energy operator.

PACS numbers: 03.65.-w, 03.65.Nk

There are point interactions in one-dimensional quantum mechanics in the form of the pseudopotential proposed by Wu and Yu (WY) [1]. On the other hand there are point interactions that can be interpreted as self-adjoint extensions (SAEs) of the kinetic energy (KE) operator $-\left(\hbar^{2} / 2 m\right) \nabla^{2}$. For the SAEs, see, for example [2-5]. We recently pointed out that there is a one-to-one correspondence between the point interactions of these two forms [6]. WY's pseudo-potential is a convenient device which enables us to obtain SAEs of the KE operator. When time-reversal invariance is imposed, the point interactions can have three parameters.

Recently there has been a surge of interest in Hamiltonians that are complex but pseudoHermitian, i.e., invariant under space-time reflection ($\mathcal{P} \mathcal{T}$ symmetry). Here \mathcal{P} and \mathcal{T} respectively stand for space reflection $(x \rightarrow-x)$ and time-reversal operations $(t \rightarrow-t)$. In particular, Albeverio, Fei and Kurasov extensively examined $\mathcal{P} \mathcal{T}$-invariant point interactions [7]. Other references regarding the $\mathcal{P \mathcal { T }}$-invariant Hamiltonian can be traced through [7-10]. The purpose of this letter is to present a $\mathcal{P} \mathcal{T}$-invariant version of the results obtained in [6]. For notational brevity we take units such that $\hbar^{2} /(2 m)=1$ where m is the mass of the particle of the system under consideration.

We consider the time-independent Schrödinger equation in one dimension in the usual notation

$$
\begin{equation*}
-\psi^{\prime \prime}(x)+\int_{-\infty}^{\infty} V\left(x, x^{\prime}\right) \psi\left(x^{\prime}\right) \mathrm{d} x^{\prime}=E \psi(x) \tag{1}
\end{equation*}
$$

where $\psi^{\prime \prime}(x)=\mathrm{d}^{2} \psi(x) / \mathrm{d} x^{2}$. For potential $V\left(x, x^{\prime}\right)$, following WY, we assume the pseudopotential of the form of

$$
\begin{equation*}
V\left(x, x^{\prime}\right)=g_{1} v_{1}\left(x, x^{\prime}\right)+g_{2} v_{2}\left(x, x^{\prime}\right)+g_{3} v_{3}\left(x, x^{\prime}\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
& v_{1}\left(x, x^{\prime}\right)=\delta(x) \delta\left(x^{\prime}\right), \quad v_{2}\left(x, x^{\prime}\right)=\delta_{p}^{\prime}(x) \delta\left(x^{\prime}\right)+\delta(x) \delta_{p}^{\prime}\left(x^{\prime}\right) \tag{3}\\
& v_{3}\left(x, x^{\prime}\right)=\delta_{p}^{\prime}(x) \delta_{p}^{\prime}\left(x^{\prime}\right)
\end{align*}
$$

The $\delta_{p}^{\prime}(x)$ is defined by

$$
\begin{equation*}
\delta_{p}^{\prime}(x) \psi(x)=\delta^{\prime}(x) \tilde{\psi}(x) \tag{4}
\end{equation*}
$$

where $\delta^{\prime}(x)=\mathrm{d} \delta(x) / \mathrm{d} x$ and

$$
\tilde{\psi}(x)= \begin{cases}\psi(x)-\frac{1}{2}\left(\psi_{+}-\psi_{-}\right) & \text {for } x>0 \tag{5}\\ \psi(x)+\frac{1}{2}\left(\psi_{+}-\psi_{-}\right) & \text {for } x<0\end{cases}
$$

Subscript $+(-)$ refers to the boundary value for $x \rightarrow+0(x \rightarrow-0)$, e.g., $\psi_{+}=\psi(+0)$. Note that $\tilde{\psi}(x)$ is continuous at $x=0$ and $\tilde{\psi}(0)=(1 / 2)\left(\psi_{+}+\psi_{-}\right)$. It is understood that $\psi(x)$ is generally discontinuous at $x=0$, i.e., $\psi_{+} \neq \psi_{-}$. Actually the $\tilde{\psi}(x)$ defined above is different from WY's $\tilde{\psi}(x)$ by an additive constant. (See equation (31) of [6].) The $\delta_{p}^{\prime}(x)$ is anti-symmetric, i.e., $\delta_{p}^{\prime}(-x)=-\delta_{p}^{\prime}(x)$. Potential $V\left(x, x^{\prime}\right)$ represents a point interaction at the origin.

For the strength parameters $g_{i}(i=1,2,3)$ of (2) they were all assumed to be real before so that $V\left(x, x^{\prime}\right)$ of (2) is Hermitian [6]. This time, however, we assume that g_{2} is pure imaginary, i.e., $g_{2}^{*}=-g_{2}$, while g_{1} and g_{3} remain as real parameters. Recall that

$$
\begin{equation*}
v_{1}\left(x, x^{\prime}\right)=v_{1}\left(-x,-x^{\prime}\right), \quad v_{2}\left(x, x^{\prime}\right)=-v_{2}\left(-x,-x^{\prime}\right), \quad v_{3}\left(x, x^{\prime}\right)=v_{3}\left(-x,-x^{\prime}\right) \tag{6}
\end{equation*}
$$

With the pure imaginary $g_{2}, V\left(x, x^{\prime}\right)$ is $\mathcal{P} \mathcal{T}$-invariant.
We are interested in the behaviour of the wavefunction around the origin. It is understood that $\psi(x)$ is twice differentiable except at $x=0$ but $\psi(x)$ and $\psi^{\prime}(x)=\mathrm{d} \psi(x) / \mathrm{d} x$ are discontinuous at $x=0$ in general. The boundary condition on the wavefunction at $x=0$ can be expressed in the following form,

$$
\binom{\psi_{+}^{\prime}}{\psi_{+}}=U\binom{\psi_{-}^{\prime}}{\psi_{-}}, \quad U=\mathrm{e}^{\mathrm{i} \theta}\left(\begin{array}{cc}
\alpha & \beta \tag{7}\\
\delta & \gamma
\end{array}\right)
$$

where $\alpha, \beta, \gamma, \delta$ and θ are all constants. The θ is real. (We do not consider the cases in which the two half-spaces of $x>0$ and $x<0$ are disjoint.) Equations (1) and (2) lead to

$$
\begin{align*}
U & =\frac{\mathrm{e}^{\mathrm{i} \theta}}{4 \Delta}\left(\begin{array}{cc}
\left(2-g_{2}\right)^{2}-g_{1} g_{3} & 4 g_{1} \\
-4 g_{3} & \left(2+g_{2}\right)^{2}-g_{1} g_{3}
\end{array}\right), \tag{8}\\
\Delta & =\frac{1}{4}\left[\left(2+g_{2}\right)\left(2-g_{2}\right)+g_{1} g_{3}\right] . \tag{9}
\end{align*}
$$

Note that α and $\gamma\left(=\alpha^{*}\right)$ are complex while β and δ are real. (If g_{2} is real, α and γ are also real.) It is understood that $\Delta \neq 0$. The α, etc, satisfy the condition

$$
\begin{equation*}
\alpha \gamma-\beta \delta=1 \tag{10}
\end{equation*}
$$

Hence among α, β, γ and δ there are only three real independent parameters. This is as it should be because we started with three parameters, g_{1}, g_{2} and g_{3}. The parametrization of the
boundary condition presented above can be rewritten into the form of (4) of Albeverio et al [7]. Our parameters are related to those of [7] by

$$
\begin{equation*}
\alpha=\gamma^{*}=\sqrt{1+b c} \mathrm{e}^{-\mathrm{i} \phi}, \quad \beta=c \quad \delta=b \tag{11}
\end{equation*}
$$

Parameter θ is unimportant for the same reason as pointed out in [11]. In the following we choose θ as

$$
\begin{equation*}
\mathrm{e}^{\mathrm{i} \theta}=-1 \tag{12}
\end{equation*}
$$

This is to conform to the notation that was used in some of the earlier papers [2, 3, 5]. (If we choose $\mathrm{e}^{\mathrm{i} \theta}=1$ instead, the signs of α, etc, in the following formulae are all reversed.)

Let us examine the transmission-reflection problem. If a wave of a specified wavelength is incident from the left, the wavefunction can be written as [12]

$$
\psi(x)= \begin{cases}\mathrm{e}^{\mathrm{i} k x}+R_{\mathrm{L}} \mathrm{e}^{-\mathrm{i} k x} & \text { for } x<0 \tag{13}\\ T_{\mathrm{L}} \mathrm{e}^{\mathrm{i} k x} & \text { for } x>0\end{cases}
$$

where $k>0$ is related to the energy by $E=k^{2}$. The wavefunction of the case in which the wave is incident from the right can be written in a similar manner, with coefficients T_{R} and R_{R}. The S-matrix is a 2×2 matrix. It is related to T and R by,

$$
S=\left(\begin{array}{cc}
S_{++} & S_{+-} \tag{14}\\
S_{-+} & S_{--}
\end{array}\right)=\left(\begin{array}{cc}
T_{\mathrm{L}} & R_{\mathrm{R}} \\
R_{\mathrm{L}} & T_{\mathrm{R}}
\end{array}\right)
$$

The ' \pm ' of S_{++}, etc, unlike the ' \pm' of $\psi_{ \pm}$that we introduced in (5), refer to the direction of the wave propagation. By solving the Schrödinger equation (1) with pseudo-potential (2) we obtain

$$
\begin{align*}
S & =\left[\mathrm{i} g_{3} k+\frac{1}{2}\left(4-g_{1} g_{3}+g_{2}^{2}\right)+\mathrm{i} g_{1} k^{-1}\right]^{-1}\left(\begin{array}{cc}
\frac{1}{2}\left(4+g_{1} g_{3}-g_{2}^{2}\right) & \mathrm{i} g_{3} k+2 g_{2}-\mathrm{i} g_{1} k^{-1} \\
\mathrm{i} g_{3} k-2 g_{2}-\mathrm{i} g_{1} k^{-1} & \frac{1}{2}\left(4+g_{1} g_{3}-g_{2}^{2}\right)
\end{array}\right) \tag{15}\\
& =\left[-\beta+k^{2} \delta+\mathrm{i} k(\alpha+\gamma)\right]^{-1}\left(\begin{array}{cc}
-2 \mathrm{i} k & \beta+k^{2} \delta-\mathrm{i} k(\alpha-\gamma) \\
\beta+k^{2} \delta+\mathrm{i} k(\alpha-\gamma) & -2 \mathrm{i} k
\end{array}\right) . \tag{16}
\end{align*}
$$

Note that $T_{\mathrm{L}}=T_{\mathrm{R}}$ and $R_{\mathrm{L}} \neq R_{\mathrm{R}}$.
The S-matrix obtained above is not unitary. Consequently the probability (defined in a conventional way) is not conserved. This can be seen from $|T|^{2}+\left|R_{\mathrm{L}}\right|^{2} \neq|T|^{2}+\left|R_{\mathrm{R}}\right|^{2}$ where $T=T_{\mathrm{L}}=T_{\mathrm{R}}$. Here we should mention the following. Deb et al pointed out that actually any $\mathcal{P} \mathcal{T}$-invariant interaction leads to $T_{\mathrm{L}}=T_{\mathrm{R}}$ [13]. They also worked out the T and R explicitly for certain models with $\mathcal{P T}$-invariant interactions and illustrated the probability non-conservation. The usual SAEs of the KE operator can be obtained by requiring that the conventional probability current $-\mathrm{i}\left(\psi^{*} \psi^{\prime}-\psi^{\prime *} \psi\right)$ be continuous across the origin [5]. Boundary condition (7) with complex α and γ, however, is not compatible with this continuity. On the other hand (7) guarantees the continuity of $-\mathrm{i}\left[(\mathcal{P T} \psi) \psi^{\prime}-(\mathcal{P T} \psi)^{\prime} \psi\right]$ across the origin where $\mathcal{P} \mathcal{T} \psi(x)=\psi^{*}(-x)$ [7].

The case that we have considered is the one-channel case in which the wavefunction of the particle has only one component. The analysis can be extended to the two-channel case. Then the pseudo-potential obtains ten parameters, which we denoted by f_{i}, g_{i}, h_{i} and η where $i=1,2$ or 3 in [6]. The two-channel version of the $\mathcal{P} \mathcal{T}$-invariant point interactions can be obtained by changing f_{2}, g_{2} and h_{2} from real to pure imaginary.

Acknowledgments

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo, Conselho Nacional de Desenvolvimento Científico e Tecnológico, the Natural Sciences and Engineering Research Council of Canada and the Japan Society for the Promotion of Science.

References

[1] Wu T T and Yu M L 2002 J. Math. Phys. 435949
[2] Gesztesy F and Kirsh W 1985 J. Reine Angew. Math. 36228
[3] Šeba P 1986 Czech. J. Phys. B 36667
Šeba P 1986 Rep. Math. Phys. 24111
[4] Albeverio S, Gesztesy F, Høegh-Krohn R and Holden H 1988 Solvable Models in Quantum Mechanics (Berlin: Springer)
[5] Coutinho F A B, Nogami Y and Perez J F 1997 J. Phys. A: Math. Gen. 303937
[6] Coutinho F A B, Nogami Y, Tomio L and Toyama F M 2004 J. Phys. A: Math. Gen. 3710653
[7] Albeverio S, Fei S-M and Kurasov P 2002 Lett. Math. Phys. 59227
[8] Bender C M, Brody D C and Jones H F 2003 Am. J. Phys. 711095
[9] Znojil M (ed) 2004 Proc. 1st Int. Workshop 'Pseudo-Hermitian Hamiltonians in Quantum Physics' (Prague, 2003) Czech. J. Phys. 54 (1) 1
[10] Znojil M (ed) 2004 Proc. 2nd Int. Workshop 'Pseudo-Hermitian Hamiltonians in Quantum Physics' (Prague, 2004) Czech. J. Phys. 54 (10) 1005
[11] Coutinho F A B, Nogami Y and Perez J F 1999 J. Phys. A: Math. Gen. 32 L133
[12] Nogami Y and Ross C K 1996 Am. J. Phys. 64923
[13] Deb R N, Khare A and Roy B D 2003 Phys. Lett. A 307215
Deb R N, Khare A and Roy B D 2003 Phys. Lett. A 310498 (erratum)

