

Home Search Collections Journals About Contact us My IOPscience

 \mathcal{PT} -invariant point interactions in one dimension

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys. A: Math. Gen. 38 L519

(http://iopscience.iop.org/0305-4470/38/29/L02)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.92 The article was downloaded on 03/06/2010 at 03:50

Please note that terms and conditions apply.

J. Phys. A: Math. Gen. 38 (2005) L519-L522

```
doi:10.1088/0305-4470/38/29/L02
```

LETTER TO THE EDITOR

\mathcal{PT} -invariant point interactions in one dimension

F A B Coutinho¹, Y Nogami², Lauro Tomio³ and F M Toyama⁴

¹ Faculdade de Medicina, Universidade de São Paulo 01246-903, SP, Brazil

² Department of Physics and Astronomy, McMaster University, Hamilton, L8S 4M1 Ontario, Canada

³ Instituto de Física Teórica, Universidade Estadual Paulista, Rua Pamplona, 145,

01405-900 São Paulo, SP, Brazil

⁴ Department of Information and Communication Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan

Received 13 April 2005 Published 6 July 2005

Online at stacks.iop.org/JPhysA/38/L519

Abstract

By using Wu and Yu's pseudo-potential, we construct point interactions in one dimension that are complex but conform to space-time reflection (\mathcal{PT}) invariance. The resulting point interactions are equivalent to those obtained by Albeverio, Fei and Kurasov as self-adjoint extensions of the kinetic energy operator.

PACS numbers: 03.65.-w, 03.65.Nk

There are point interactions in one-dimensional quantum mechanics in the form of the pseudopotential proposed by Wu and Yu (WY) [1]. On the other hand there are point interactions that can be interpreted as self-adjoint extensions (SAEs) of the kinetic energy (KE) operator $-(\hbar^2/2m)\nabla^2$. For the SAEs, see, for example [2–5]. We recently pointed out that there is a one-to-one correspondence between the point interactions of these two forms [6]. WY's pseudo-potential is a convenient device which enables us to obtain SAEs of the KE operator. When time-reversal invariance is imposed, the point interactions can have three parameters.

Recently there has been a surge of interest in Hamiltonians that are complex but pseudo-Hermitian, i.e., invariant under space-time reflection (\mathcal{PT} symmetry). Here \mathcal{P} and \mathcal{T} respectively stand for space reflection ($x \to -x$) and time-reversal operations ($t \to -t$). In particular, Albeverio, Fei and Kurasov extensively examined \mathcal{PT} -invariant point interactions [7]. Other references regarding the \mathcal{PT} -invariant Hamiltonian can be traced through [7–10]. The purpose of this letter is to present a \mathcal{PT} -invariant version of the results obtained in [6]. For notational brevity we take units such that $\hbar^2/(2m) = 1$ where *m* is the mass of the particle of the system under consideration.

We consider the time-independent Schrödinger equation in one dimension in the usual notation

$$-\psi''(x) + \int_{-\infty}^{\infty} V(x, x')\psi(x') \,\mathrm{d}x' = E\psi(x), \tag{1}$$

0305-4470/05/290519+04\$30.00 © 2005 IOP Publishing Ltd Printed in the UK L519

where $\psi''(x) = d^2 \psi(x)/dx^2$. For potential V(x, x'), following WY, we assume the pseudo-potential of the form of

$$V(x, x') = g_1 v_1(x, x') + g_2 v_2(x, x') + g_3 v_3(x, x'),$$
(2)

where

$$v_{1}(x, x') = \delta(x)\delta(x'), \qquad v_{2}(x, x') = \delta'_{p}(x)\delta(x') + \delta(x)\delta'_{p}(x'), v_{3}(x, x') = \delta'_{p}(x)\delta'_{p}(x').$$
(3)

The $\delta'_p(x)$ is defined by

$$\delta'_{p}(x)\psi(x) = \delta'(x)\tilde{\psi}(x), \tag{4}$$

where $\delta'(x) = d\delta(x)/dx$ and

$$\tilde{\psi}(x) = \begin{cases} \psi(x) - \frac{1}{2}(\psi_{+} - \psi_{-}) & \text{for } x > 0, \\ \psi(x) + \frac{1}{2}(\psi_{+} - \psi_{-}) & \text{for } x < 0. \end{cases}$$
(5)

Subscript + (-) refers to the boundary value for $x \to +0$ ($x \to -0$), e.g., $\psi_+ = \psi(+0)$. Note that $\tilde{\psi}(x)$ is continuous at x = 0 and $\tilde{\psi}(0) = (1/2)(\psi_+ + \psi_-)$. It is understood that $\psi(x)$ is generally discontinuous at x = 0, i.e., $\psi_+ \neq \psi_-$. Actually the $\tilde{\psi}(x)$ defined above is different from WY's $\tilde{\psi}(x)$ by an additive constant. (See equation (31) of [6].) The $\delta'_p(x)$ is anti-symmetric, i.e., $\delta'_p(-x) = -\delta'_p(x)$. Potential V(x, x') represents a point interaction at the origin.

For the strength parameters g_i (i = 1, 2, 3) of (2) they were all assumed to be real before so that V(x, x') of (2) is Hermitian [6]. This time, however, we assume that g_2 is pure imaginary, i.e., $g_2^* = -g_2$, while g_1 and g_3 remain as real parameters. Recall that

$$v_1(x, x') = v_1(-x, -x'),$$
 $v_2(x, x') = -v_2(-x, -x'),$ $v_3(x, x') = v_3(-x, -x').$

(6)

With the pure imaginary g_2 , V(x, x') is \mathcal{PT} -invariant.

We are interested in the behaviour of the wavefunction around the origin. It is understood that $\psi(x)$ is twice differentiable except at x = 0 but $\psi(x)$ and $\psi'(x) = d\psi(x)/dx$ are discontinuous at x = 0 in general. The boundary condition on the wavefunction at x = 0 can be expressed in the following form,

$$\begin{pmatrix} \psi'_{+} \\ \psi_{+} \end{pmatrix} = U \begin{pmatrix} \psi'_{-} \\ \psi_{-} \end{pmatrix}, \qquad U = e^{i\theta} \begin{pmatrix} \alpha & \beta \\ \delta & \gamma \end{pmatrix}, \tag{7}$$

where α , β , γ , δ and θ are all constants. The θ is real. (We do not consider the cases in which the two half-spaces of x > 0 and x < 0 are disjoint.) Equations (1) and (2) lead to

$$U = \frac{e^{i\theta}}{4\Delta} \begin{pmatrix} (2 - g_2)^2 - g_1g_3 & 4g_1 \\ -4g_3 & (2 + g_2)^2 - g_1g_3 \end{pmatrix},$$
(8)

$$\Delta = \frac{1}{4} [(2+g_2)(2-g_2) + g_1 g_3]. \tag{9}$$

Note that α and γ (= α^*) are complex while β and δ are real. (If g_2 is real, α and γ are also real.) It is understood that $\Delta \neq 0$. The α , etc, satisfy the condition

$$\alpha \gamma - \beta \delta = 1. \tag{10}$$

Hence among α , β , γ and δ there are only three real independent parameters. This is as it should be because we started with three parameters, g_1 , g_2 and g_3 . The parametrization of the

boundary condition presented above can be rewritten into the form of (4) of Albeverio *et al* [7]. Our parameters are related to those of [7] by

$$\alpha = \gamma^* = \sqrt{1 + bc} e^{-i\phi}, \qquad \beta = c \quad \delta = b.$$
(11)

Parameter θ is unimportant for the same reason as pointed out in [11]. In the following we choose θ as

$$e^{i\theta} = -1. \tag{12}$$

This is to conform to the notation that was used in some of the earlier papers [2, 3, 5]. (If we choose $e^{i\theta} = 1$ instead, the signs of α , etc, in the following formulae are all reversed.)

Let us examine the transmission–reflection problem. If a wave of a specified wavelength is incident from the left, the wavefunction can be written as [12]

$$\psi(x) = \begin{cases} e^{ikx} + R_{\rm L} e^{-ikx} & \text{for } x < 0\\ T_{\rm L} e^{ikx} & \text{for } x > 0, \end{cases}$$
(13)

where k > 0 is related to the energy by $E = k^2$. The wavefunction of the case in which the wave is incident from the right can be written in a similar manner, with coefficients T_R and R_R . The S-matrix is a 2 × 2 matrix. It is related to T and R by,

$$S = \begin{pmatrix} S_{++} & S_{+-} \\ S_{-+} & S_{--} \end{pmatrix} = \begin{pmatrix} T_{\rm L} & R_{\rm R} \\ R_{\rm L} & T_{\rm R} \end{pmatrix}.$$
 (14)

The ' \pm ' of S_{++} , etc, unlike the ' \pm ' of ψ_{\pm} that we introduced in (5), refer to the direction of the wave propagation. By solving the Schrödinger equation (1) with pseudo-potential (2) we obtain

$$S = \left[ig_{3}k + \frac{1}{2} \left(4 - g_{1}g_{3} + g_{2}^{2} \right) + ig_{1}k^{-1} \right]^{-1} \begin{pmatrix} \frac{1}{2} \left(4 + g_{1}g_{3} - g_{2}^{2} \right) & ig_{3}k + 2g_{2} - ig_{1}k^{-1} \\ ig_{3}k - 2g_{2} - ig_{1}k^{-1} & \frac{1}{2} \left(4 + g_{1}g_{3} - g_{2}^{2} \right) \end{pmatrix}$$
(15)

$$= \left[-\beta + k^{2}\delta + ik(\alpha + \gamma)\right]^{-1} \begin{pmatrix} -2ik & \beta + k^{2}\delta - ik(\alpha - \gamma)\\ \beta + k^{2}\delta + ik(\alpha - \gamma) & -2ik \end{pmatrix}.$$
 (16)

Note that $T_{\rm L} = T_{\rm R}$ and $R_{\rm L} \neq R_{\rm R}$.

The S-matrix obtained above is not unitary. Consequently the probability (defined in a conventional way) is not conserved. This can be seen from $|T|^2 + |R_L|^2 \neq |T|^2 + |R_R|^2$ where $T = T_L = T_R$. Here we should mention the following. Deb *et al* pointed out that actually any $\mathcal{P}T$ -invariant interaction leads to $T_L = T_R$ [13]. They also worked out the *T* and *R* explicitly for certain models with $\mathcal{P}T$ -invariant interactions and illustrated the probability non-conservation. The usual SAEs of the KE operator can be obtained by requiring that the conventional probability current $-i(\psi^*\psi' - \psi'^*\psi)$ be continuous across the origin [5]. Boundary condition (7) with complex α and γ , however, is not compatible with this continuity. On the other hand (7) guarantees the continuity of $-i[(\mathcal{P}T\psi)\psi' - (\mathcal{P}T\psi)'\psi]$ across the origin where $\mathcal{P}T\psi(x) = \psi^*(-x)$ [7].

The case that we have considered is the one-channel case in which the wavefunction of the particle has only one component. The analysis can be extended to the two-channel case. Then the pseudo-potential obtains ten parameters, which we denoted by f_i , g_i , h_i and η where i = 1, 2 or 3 in [6]. The two-channel version of the \mathcal{PT} -invariant point interactions can be obtained by changing f_2 , g_2 and h_2 from real to pure imaginary.

Acknowledgments

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo, Conselho Nacional de Desenvolvimento Científico e Tecnológico, the Natural Sciences and Engineering Research Council of Canada and the Japan Society for the Promotion of Science.

References

- [1] Wu T T and Yu M L 2002 J. Math. Phys. 43 5949
- [2] Gesztesy F and Kirsh W 1985 J. Reine Angew. Math. 362 28
- [3] Šeba P 1986 Czech. J. Phys. B 36 667
 Šeba P 1986 Rep. Math. Phys. 24 111
- [4] Albeverio S, Gesztesy F, Høegh-Krohn R and Holden H 1988 Solvable Models in Quantum Mechanics (Berlin: Springer)
- [5] Coutinho F A B, Nogami Y and Perez J F 1997 J. Phys. A: Math. Gen. 30 3937
- [6] Coutinho F A B, Nogami Y, Tomio L and Toyama F M 2004 J. Phys. A: Math. Gen. 37 10653
- [7] Albeverio S, Fei S-M and Kurasov P 2002 Lett. Math. Phys. 59 227
- [8] Bender C M, Brody D C and Jones H F 2003 Am. J. Phys. 71 1095
- [9] Znojil M (ed) 2004 Proc. 1st Int. Workshop 'Pseudo-Hermitian Hamiltonians in Quantum Physics' (Prague, 2003) Czech. J. Phys. 54 (1) 1
- [10] Znojil M (ed) 2004 Proc. 2nd Int. Workshop 'Pseudo-Hermitian Hamiltonians in Quantum Physics' (Prague, 2004) Czech. J. Phys. 54 (10) 1005
- [11] Coutinho F A B, Nogami Y and Perez J F 1999 J. Phys. A: Math. Gen. 32 L133
- [12] Nogami Y and Ross C K 1996 Am. J. Phys. 64 923
- [13] Deb R N, Khare A and Roy B D 2003 *Phys. Lett.* A **307** 215
 Deb R N, Khare A and Roy B D 2003 *Phys. Lett.* A **310** 498 (erratum)