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Abstract
By using Wu and Yu’s pseudo-potential, we construct point interactions in
one dimension that are complex but conform to space–time reflection (PT )

invariance. The resulting point interactions are equivalent to those obtained
by Albeverio, Fei and Kurasov as self-adjoint extensions of the kinetic energy
operator.

PACS numbers: 03.65.−w, 03.65.Nk

There are point interactions in one-dimensional quantum mechanics in the form of the pseudo-
potential proposed by Wu and Yu (WY) [1]. On the other hand there are point interactions
that can be interpreted as self-adjoint extensions (SAEs) of the kinetic energy (KE) operator
−(h̄2/2m)∇2. For the SAEs, see, for example [2–5]. We recently pointed out that there is
a one-to-one correspondence between the point interactions of these two forms [6]. WY’s
pseudo-potential is a convenient device which enables us to obtain SAEs of the KE operator.
When time-reversal invariance is imposed, the point interactions can have three parameters.

Recently there has been a surge of interest in Hamiltonians that are complex but pseudo-
Hermitian, i.e., invariant under space–time reflection (PT symmetry). Here P and T
respectively stand for space reflection (x → −x) and time-reversal operations (t → −t). In
particular, Albeverio, Fei and Kurasov extensively examined PT -invariant point interactions
[7]. Other references regarding the PT -invariant Hamiltonian can be traced through [7–10].
The purpose of this letter is to present a PT -invariant version of the results obtained in [6].
For notational brevity we take units such that h̄2/(2m) = 1 where m is the mass of the particle
of the system under consideration.

We consider the time-independent Schrödinger equation in one dimension in the usual
notation

−ψ ′′(x) +
∫ ∞

−∞
V (x, x ′)ψ(x ′) dx ′ = Eψ(x), (1)
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where ψ ′′(x) = d2ψ(x)/dx2. For potential V (x, x ′), following WY, we assume the pseudo-
potential of the form of

V (x, x ′) = g1v1(x, x ′) + g2v2(x, x ′) + g3v3(x, x ′), (2)

where

v1(x, x ′) = δ(x)δ(x ′), v2(x, x ′) = δ′
p(x)δ(x ′) + δ(x)δ′

p(x ′),

v3(x, x ′) = δ′
p(x)δ′

p(x ′).
(3)

The δ′
p(x) is defined by

δ′
p(x)ψ(x) = δ′(x)ψ̃(x), (4)

where δ′(x) = dδ(x)/dx and

ψ̃(x) =
{

ψ(x) − 1
2 (ψ+ − ψ−) for x > 0,

ψ(x) + 1
2 (ψ+ − ψ−) for x < 0.

(5)

Subscript + (−) refers to the boundary value for x → +0 (x → −0), e.g., ψ+ = ψ(+0).
Note that ψ̃(x) is continuous at x = 0 and ψ̃(0) = (1/2)(ψ+ + ψ−). It is understood that
ψ(x) is generally discontinuous at x = 0, i.e., ψ+ �= ψ−. Actually the ψ̃(x) defined above
is different from WY’s ψ̃(x) by an additive constant. (See equation (31) of [6].) The δ′

p(x)

is anti-symmetric, i.e., δ′
p(−x) = −δ′

p(x). Potential V (x, x ′) represents a point interaction at
the origin.

For the strength parameters gi (i = 1, 2, 3) of (2) they were all assumed to be real
before so that V (x, x ′) of (2) is Hermitian [6]. This time, however, we assume that g2 is pure
imaginary, i.e., g∗

2 = −g2, while g1 and g3 remain as real parameters. Recall that

v1(x, x ′) = v1(−x,−x ′), v2(x, x ′) = −v2(−x,−x ′), v3(x, x ′) = v3(−x,−x ′).
(6)

With the pure imaginary g2, V (x, x ′) is PT -invariant.
We are interested in the behaviour of the wavefunction around the origin. It is understood

that ψ(x) is twice differentiable except at x = 0 but ψ(x) and ψ ′(x) = dψ(x)/dx are
discontinuous at x = 0 in general. The boundary condition on the wavefunction at x = 0 can
be expressed in the following form,(

ψ ′
+

ψ+

)
= U

(
ψ ′

−
ψ−

)
, U = eiθ

(
α β

δ γ

)
, (7)

where α, β, γ , δ and θ are all constants. The θ is real. (We do not consider the cases in which
the two half-spaces of x > 0 and x < 0 are disjoint.) Equations (1) and (2) lead to

U = eiθ

4�

(
(2 − g2)

2 − g1g3 4g1

−4g3 (2 + g2)
2 − g1g3

)
, (8)

� = 1
4 [(2 + g2)(2 − g2) + g1g3]. (9)

Note that α and γ (= α∗) are complex while β and δ are real. (If g2 is real, α and γ are also
real.) It is understood that � �= 0. The α, etc, satisfy the condition

αγ − βδ = 1. (10)

Hence among α, β, γ and δ there are only three real independent parameters. This is as it
should be because we started with three parameters, g1, g2 and g3. The parametrization of the
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boundary condition presented above can be rewritten into the form of (4) of Albeverio et al
[7]. Our parameters are related to those of [7] by

α = γ ∗ =
√

1 + bc e−iφ, β = c δ = b. (11)

Parameter θ is unimportant for the same reason as pointed out in [11]. In the following we
choose θ as

eiθ = −1. (12)

This is to conform to the notation that was used in some of the earlier papers [2, 3, 5]. (If we
choose eiθ = 1 instead, the signs of α, etc, in the following formulae are all reversed.)

Let us examine the transmission–reflection problem. If a wave of a specified wavelength
is incident from the left, the wavefunction can be written as [12]

ψ(x) =
{

eikx + RL e−ikx for x < 0

TL eikx for x > 0,
(13)

where k > 0 is related to the energy by E = k2. The wavefunction of the case in which the
wave is incident from the right can be written in a similar manner, with coefficients TR and
RR. The S-matrix is a 2 × 2 matrix. It is related to T and R by,

S =
(

S++ S+−
S−+ S−−

)
=

(
TL RR

RL TR

)
. (14)

The ‘±’ of S++, etc, unlike the ‘±’ of ψ± that we introduced in (5), refer to the direction of
the wave propagation. By solving the Schrödinger equation (1) with pseudo-potential (2) we
obtain

S =
[

ig3k +
1

2

(
4 − g1g3 + g2

2

)
+ ig1k

−1

]−1
( 1

2

(
4 + g1g3 − g2

2

)
ig3k + 2g2 − ig1k

−1

ig3k − 2g2 − ig1k
−1 1

2

(
4 + g1g3 − g2

2

)
)

(15)

= [−β + k2δ + ik(α + γ )]−1

(
−2ik β + k2δ − ik(α − γ )

β + k2δ + ik(α − γ ) −2ik

)
. (16)

Note that TL = TR and RL �= RR.
The S-matrix obtained above is not unitary. Consequently the probability (defined in

a conventional way) is not conserved. This can be seen from |T |2 + |RL|2 �= |T |2 + |RR|2
where T = TL = TR. Here we should mention the following. Deb et al pointed out that
actually any PT -invariant interaction leads to TL = TR [13]. They also worked out the T and
R explicitly for certain models with PT -invariant interactions and illustrated the probability
non-conservation. The usual SAEs of the KE operator can be obtained by requiring that
the conventional probability current −i(ψ∗ψ ′ − ψ ′∗ψ) be continuous across the origin [5].
Boundary condition (7) with complex α and γ , however, is not compatible with this continuity.
On the other hand (7) guarantees the continuity of −i[(PT ψ)ψ ′−(PT ψ)′ψ] across the origin
where PT ψ(x) = ψ∗(−x) [7].

The case that we have considered is the one-channel case in which the wavefunction of
the particle has only one component. The analysis can be extended to the two-channel case.
Then the pseudo-potential obtains ten parameters, which we denoted by fi, gi, hi and η where
i = 1, 2 or 3 in [6]. The two-channel version of the PT -invariant point interactions can be
obtained by changing f2, g2 and h2 from real to pure imaginary.
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